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Causal Phase in QED3 
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The operator S in Fock space which describes the scattering and particle production 
processes in an external time-dependent electromagnetic potential A can be 
constructed from the one-particle S-matrix up to a physical phase k[A]. In this 
work we determine this phase for QED in (2 + 1) dimensions by means of 
causality and show that no ultraviolet divergences arise, in contrast to the usual 
formalism of QED3. 

1. INTRODUCTION 

The efforts to test quantum electrodynamics in strong electromagnetic 
fields in the late 1970s brought into evidence the external field problem in 
the context of the spontaneous decay of the neutral to a charged vacuum 
through pair creation in heavy-ion collision experiments. Although the physics 
of the quantized electron-positron field in interaction with a classical electro- 
magnetic field is well understood, some mathematical aspects of the theory 
are rather involved, particularly the definition of the scattering operator in 
Fock space for time-dependent external fields (for a review see Seipp, 1982, 
and references therein). 

In this paper we introduce the scattering operator S in Fock space for 
quantum electrodynamics in (2 + 1)-dimensional space-time, in an external 
time-dependent electromagnetic field A, and show that it is unitary and 
uniquely determined up to a phase. This phase is related to vacuum fluctua- 
tions due to the presence of the external potential A~,(x) and therefore must 
depend on it. We then determine the phase K[A] in lowest order of perturbation 
theory by imposing Bogoliubov's local causality condition on S, and show 
that the vacuum-vacuum amplitude is ultraviolet finite. 

Instituto de Ffsica Te6rica, Universidade Estadual Paulista, 01405-900, S,~o Paulo, SE Brazil. 

1565 

0020-7748/97/0700-1565512.50/0 �9 1997 Plenum Publishing Corporation 



1566 Boldo, Pimentel, and Tomazeifi 

The construction of the S-matrix in Fock space is outlined in Section 
2. In Section 3 we present a brief digression on the global as well as the 
differential causality conditions for the S-operator in Fock space. Section 4 
is devoted to the derivation of the causal phase for QED3 in lowest order of 
perturbation theory, applying the concepts introduced in the preceding section, 
and exploiting the connection with vacuum polarization. In Section 5 we 
summarize our conclusions. 

2. THE SCATTERING OPERATOR IN F O C K  SPACE 

We start from the one-particle Hamiltonian 

H(t) = 14o + V(t) 

where 

(1) 

V(t) = e(V(t, x) - or-A(t, x)) (2) 

The potentials are assumed to vanish for t ~ __.oo in such a way that the 
wave operators 

W~n = s -  lim U(t, O)?e -iH~ (3) 
out t._~_+oo 

exist, together with a unitary S-matrix 

S = Wo*.tWi. (4) 

Since by assumption we have the free dynamics for t ---> _o% we settle 
second quantization on the Fock representation of the free Dirac field 

~b(f) = b(P~ + d(P~ t (5) 

Here pO are the projection operators on the positive and negative spectral 
subspaces of the one-particle free Dirac Hamiltonian H0, respectively. 

The second-quantized S-matrix in Fock space is now defined by 

~(Stf) = S- t~( f )S  (6) 

~(S*f)* = S-l~bff)*S, Vf ~ ~ l  (7) 

if it exists. We have taken the adjoint S t in the test functions since ~(f)  is 
antilinear in f.  It follows from the above definitions that S is unitary and 
uniquely determined up to a phase. In order to prove this assertion we proceed 
as in Scharf (1995). 

Proposition. S is uniquely determined by (6) and (7) up to a factor. 
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Proof. If S is another operator in ~ satisfying (6), then 

s - ~ o ~ s  = ~ - l , ( f ) ~  

~S-%(f)  = 0(f)gS -1, Vf  e ~el 

and the same is true for all ~t(f). From the irreducibility of the Fock represen- 
tation, we have 

SS - l = a l ,  i.e., S = a S  �9 (8) 

Now, taking the adjoint of (6) 

i ]$(Stf)  t = S"f l l l ( f ) lS  - l ' t  

and comparing with (7), it follows again from the irreducibility of the Fock 
representation that 

S* = pS -I (9) 

If we take the adjoint and the inverse of this equation, namely 

S = p*S -I* 

S *-t = p-1 s 

we find that 

From (8) and (9) we obtain 

Therefore, we may choose 

p * = p  

~t = lal2p~-t (10) 

lal 2 = p-i (11) 

such that the operator S becomes unitary. Since the absolute value of a in 
(8) is fixed by (11), S is uniquely determined up to a phase e ix. However, 
this phase k[A] is physical because it depends on the external potential A~(x). 
As we shall see, this phase will be fixed by the requirement of causality of S. 

The S-matrix S in Fock space exists if and only if P§ is a Hilbert- 
Schmidt operator. In this case it is given by 

S = CeS+-S:kb*dt:e(S*+-+~-l)b*b::e(l-S:k~a4:eS:kS-+ab (12) 

where 

Sly = P, SPj, i , j  = + , -  (13) 
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and 

ICI 2 = det(l - S+_S*_+) (14) 

The first factor in (12) describes electron-positron pair creation, the 
second one electron scattering, the third one positron scattering, and the last 
one pair annihilation. 

3. THE CONDITION OF CAUSALITY 

In the one-particle theory the condition that a change in the interaction 
law in any space-time region can influence the evolution of the system only 
at subsequent times can be translated into the factorization of the S-matrix 

S[A] = $2S1, Sj ~=f S[Aj] (15) 

where we have written the electromagnetic potential as 

A"(x) = A~(x) + At(x) (16) 

which is the sum of two parts with disjoint supports in time 

supp Al C (-oo, r], supp A2 C [r, +oo) (17) 

A similar factorization should hold from equation (6) for the S-operator 
S in Fock space, 

(~'~, S ~ )  = (~"~, 8281~'~) (18) 

We call (18) the global causality condition for the Fock-space S-operator, in 
contrast to the differential condition (Bogoliubov and Shirkov, 1980) 

~A~(y) S ~ = 0  for x ~ 1 7 6  (19) 

We saw in the last section that the S-matrix in Fock space can be uniquely 
determined up to a phase, 

S = e"q'S (20) 

where S is unitary, and given by expression (12). Inserting (20) into (19), 
we obtain 

~A~(y) SI~' ~--~(x) a 

+ ( ) (21) 
- i aA~(y)~A,(x) ~ Sf l ,  aA,(x) a 
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It can be shown from the unitarity of g that the last term in (21) is 
purely imaginary. Consequently, the real part of the causality condition (19) 
is automatically satisfied, while for the imaginary part we may choose q0 
conveniently such that (19) holds. 

4. T H E  C A U S A L  P H A S E  

We now turn to the determination of the causal phase in lowest order 
of perturbation theory. From (12) we have 

Sfl=C(fl+~(S+_)m,,btmdt,,l'l+'")m~ (22) 

where we have put S-~- equal to unity in lowest order. Taking the functional 
derivative of (22) with respect to A~(x) and keeping only terms O(A) in the 
resulting expression, we arrive at 

~-~(x)] (23) 

In lowest order we may set C 2 = 1. 
The local causality condition (19) together with expressions (21) and 

(23) yield 

F(x, y) dee 82~0 + Im 8 T~  8S+_ 
= ~A~(y)~A~(x) ~ (S+-)* ~'~(x)] = 0 (24) 

for x ~ < yO. 
Next we calculate the second term in (24). In lowest order of perturbation 

theory, we have 

SQ )- = --i(2aT)-:P+(p)'y~ + q)P_(-q)  (25) 

As in Scharf et al. (1994), we use the following representation for the Dirac 
matrices in (2 + 1) dimensions: 

,~/0 = 0.3 ,  ,~l = i0.1 ' ~/2 = it. 2 (26) 

where 0-j are the Pauli matrices. 
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From (25) we obtain 

~S+_ 
Tr ~ (S+_)* ~a~(x---"~ 

= e2(2,tr)-S [ d2p : d2q eitP+q)~'-y~[e_(-q)v~176 

= e2(2,rr) -5 [ d3k ei~x-y)Tr (27) 

T~(k) is the tensor of pair creation in (2 + 1) dimensions, which is given 
by (Scharf et al., 1994) 

TrY(k) - (2"tr)3 P~V(k) (28) 
e 2 

= f d3p ~i(p2 _ m2)O(pO)8[(k _ p)2 _ m E] 

• O(k ~ - p~ p) (29) 

where 

with 

t~(k, p) = tr[~/~(,6 + m)'y~(/( - /~  - m)] 

It follows from the gauge invariance of (28) that 

(30) 

(31) 

/5~-~(k) = (k~k r - ~gg~)B(F) (32) 

Pl~V( k ) -~ imEIXVCLkaI-I (2)( k 2) (33) 

Performing the trace in (30) and the resulting momentum integral in (29), 
we find that (Scharf et al., 1994) 

- - e  2 k 2 + 4 m  2 O(ko)  
/~(k 2) - 2(4,tr)2 ~ O(k 2 - 4m2) - - ~  - (34) 

- - e  2 O(k0)  
I'l(2)(k 2) - 2(2~r)---- 5 0 ( k  2 - 4m 2) ~ (35) 

Substituting (27) and (28) in (24), we rewrite the causal function F(x, 
y) as 

~2q~ 1 I F(x, y) - ~Ag(y)gA~(x) (2~r)------ ~ Im d3k eik(x-Y)f)gV(k) (36) 
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We can evaluate the imaginary part of the last term in the above equation 
by taking into account (31)-(35). S i n c e / ~ ( k )  is real and/5~(k) is imaginary, 
we can write 

~2~0 
F(x, y) - ~A~(y)SA~(x) 

l lfea d 3 k s i n k ( x - Y ) P ~  ~(k) 
(2'11")2 >0 

- i fko>od3kcosk(x-Y)P,~v(k)  ) (37) 

In order to write the last term in (37) as a complex Fourier transform, we 
must continue Ps~(k) and P~(k) antisymmetrically to ko < 0, 

~2q~ 
F(x, y) - 8A.(y)SA~(x) 1if (2~r)2 ~ d3k e-ik~x-Y)[d~(k) - d~(k)] (38) 

where 

d~r = (k~k �9 - k2g~r 2) 

d,~"(k) = imr 2) 

(39) 

(40) 

and 

- e  2 k 2 + 4m 2 sgn(k0) 
B(k 2) - - -  O(k 2 - 4m 2) ~ (41) 

2(4~) 2 k 2 x /~  

1_i(2)(k2) - e  2 sgn(ko) - - -  O(k 2 - 4m 2) ~ (42) 
2(2"a') 2 

According to the Titchmarsh theorem, the Fourier transform of a causal 
function vanishing for x ~ - y0 = t < 0 satisfies a dispersion relation. Since 
d~"(k) and d,~"(k) are real and purely imaginary, respectively, they cannot be 
the Fourier transform of a causal function. The lacking imaginary part of 
d~"(k) and the lacking real part of d,~(k) must be supplied by the first term 
containing the phase q~[A], 

~2q~ = 1 i f d3 k e_ikt:,_y)[iq~V(k ) _ q~V(k)] (43) 
~AI.L(y)~Av(x ) (2"/1") 2 2 
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where 

= 1 ~ I +~ dt d~(kt) q~(k) 
~r J_~ t2(1 - t) 

: +  )lo (ll- + ] + ~ ]  sgn(~) 
(44) 

and 

__l ~ f+~ dt---id~V(kt) 
q~(k) = ~r t(1 - t) 

= - ~  - ~  log ~ ~ , 1  sgn(ko) 

with a - -e2/[2(4~r) 2] and /3 ------ -e2/[2(2'r02]. 

(45) 

In the above dispersion 
relations, @ denotes the principal value of the respective integral. 

The causal phase is obtained by two integrations 

82'# O(A 4) "#[A] = l l d3x f d3Y ~A~(y)BA,(x)a~(y)Av(x) + 

---2Id3k[[k~k~-g~)l-ll"(k)+ime~'k~IIl2'(k)]A~(k)A*(k)lkk2 (46) 

where 

l_lt~)(k ) = a__Tr 4c~ 1 + log + , f ~ - ~ ]  + 4m sgn(ko) (47) 

IIl2)(k) = 1 r~~  log + ~ ]  sgn(ko) (48) 

If we decompose the electromagnetic fields which appear in the integrand 
of (46) into the respective real and imaginary parts, we see that `#[A] is indeed 
real. The S-operator in Fock space S[A] is then completely determined. 

By means of (12) and (20) we obtain the vacuum-vacuum amplitude 

(~0,, S~) = Ce/~*(l'~, eS+-S:Lb*~['~) = Ce i~ (49) 

The absolute square 

I(D,, SI-I)I 2 = C 2 = 1 - P (50 )  
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must be equal to one minus the total probability P of pair creation, 

P = e2(2"tr) -2 f d3k T~)~(k)A)t(k)A*(k) (51) 

since the external field can change the vacuum state only into pair states. In 
order to combine the normalization constant C with e i) we write the former 
in the exponential form 

C=exp[arld3k"" + O[A4] 1 

Hence, from (28) and (31)-(35) we get 

C =  e x p ( - ~ f  ~ d3 r ik~k~ - g~)l-l~')(k2) + 

• A)~(k)A*(k)} (52) 

where 

4 m  2 
(53) 

1-l~2)(ka) = 130( ka - 4m 2) (54) 

Finally, taking into account (46)-(48), (49), and (52)-(54), we obtain 
the vacuum-vacuum amplitude 

<,.,.s,-,,: <"-,,-),-,<,,<,,, +,,, 

• A)~(k)A*(k)} (55) 

where 

II(1)(k 2) = II~l)(k 2) - il'I~l)(k a) (56) 

II(a)(k 2) = H~a)(k a) - ilI~a)(k 2) 

For k 2 < 4m 2 the expression in square brackets in (55) coincides up to 
a multiplicative factor with the complex conjugate of the two-point function 
that corresponds to the vacuum polarization tensor. 
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5. CONCLUDING REMARKS 

We have considered QED3 in the presence of an external electromagnetic 
field A and shown that a unitary scattering operator S which satisfies the 
local causality condition can be constructed in Fock space. We have also 
derived the vacuum-vacuum amplitude and established the connection with 
vacuum polarization in lowest order of perturbation theory. In contrast with 
the four-dimensional case, the vacuum-vacuum amplitude is ultraviolet finite 
and exhibits an additional contribution from the antisymmetric part of the 
vacuum polarization tensor in (2 + 1)-dimensional space-time (Scharf et al., 
1994), which emerges from the topological structure of the theory. 
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